人脸识别是计算机视觉领域中的一项核心技术,对于整个人工智能技术的发展也是非常重要,目前已经在多个领域中投入使用,相对较为成熟。很多人认为人脸识别技术高深莫测,难以企及,其实也并非如此神秘,本文将通过OpenCV和Python,利用简短的代码,帮助每一位读者实现人脸识别。

人脸识别属于人工智能吗(AI算法如何识别人脸脸型)

OpenCV:是一个主要针对实时计算机视觉的编程函数库。本文旨在使用OpenCV和Python/C++从图像中检测面部。

人脸识别属于人工智能吗(AI算法如何识别人脸脸型)

本文基础:在机器上安装Python和C++,了解Python和C ++的编码基础知识,代码编辑器。有了这些,我们就可以开始进行人脸识别了。

为了通过代码实现人脸识别,我们将使用OpenCV中基于Haar的cascade分类器,这一种有效的对象检测方法。它是一种基于机器学习的方法,其中cascade函数是通过许多positive和negative图像得到训练,然后用于检测其他图像中的对象。 OpenCV已经包含许多面部、眼睛、微笑等预先训练的分类器。这些XML模型文件存储在opencv / data / haarcascades /的位置。

让我们先开始在Python上编写代码实现人脸识别然后再展示通过C++实现的教程。

Python

首先,导入numpy、OpenCV两个库:

import numpy as np

import cv2 as cv

然后,加载OpenCV中自带的基于Haar的cascade分类器来实现人脸识别。haarcascade_frontalface_default.xml 是OpenCV中已经经过训练的人脸识别模型文件。

face_cascade = cv.CascadeClassifier(\’\\\\cv2\\\\data\\\\haarcascade_frontalface_default.xml\’)

eye_cascade = cv.CascadeClassifier(\’\\\\cv2\\\\data\\\\haarcascade_eye.xml\’)

现在,我们需要加载我们想要进行人脸检测的图像。对于本文,我们将使用如下OpenCV自带的\’lenna\’经典图像。

加载我们的图片,并将其转化为灰度图像:

img = cv.imread(\’lenna.jpg\’)

gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

我们已经做好了人脸检测的准备工作,现在我们通过我们前面加载的cascade分类器的detectMultiScale函数来进行人脸检测:

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

这里的1.3表示scaleFactor,5表示minNeighbours。

scaleFactor:在前后两次相继的扫描中,搜索窗口的比例系数。例如1.3指将搜索窗口依次扩大30%。

minNeighbors:构成检测目标的相邻矩形的最小个数。如果组成检测目标的小矩形的个数和小于minNeighbors都会被排除。

代码运行之后面部检测就完成了,并且在图像中找到的所有人脸数据都存储在faces这个数组中。然后,我们还可以在人脸周围绘制矩形:

for (x,y,w,h) in faces:

cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

roi_gray = gray[y:y+h, x:x+w]

roi_color = img[y:y+h, x:x+w]

我们几乎已经完成了人脸识别,只需再将得到的带有人脸标记的图像显示出来即可。为此我们使用以下代码:

cv.imshow(\’Face_Detect\’,img)

cv.waitKey(0)

cv.destroyAllWindows()

到此,我们已经学会了通过Python实现人脸识别,现在可以尝试在OpenCV库中使用不同的分类器来检测不同的对象。如果你有足够多的图片,甚至还可以制作自己的图片分类器! 接下来我们将展示如何通过C++来实现人脸识别。